Study on Artificial Neural Network for Predicting Gas-Liquid Two-Phase Pressure Drop in Pipeline-Riser System

نویسندگان

چکیده

The pressure drop for air-water two-phase flow in pipeline systems with S-shaped and vertical risers at various inclinations (−1°, −2°, −4°, −5° −7° from horizontal) was predicted using an artificial neural network (ANN). In the designing of ANN model, superficial velocity gas liquid as well inclination downcomer were used input variables, while values flows determined output. An a hidden layer containing 14 neurons developed based on trial-and-error method. A sigmoid function chosen transfer layer, linear output layer. Levenberg-Marquardt algorithm training model. total 415 experimental data points reported literature collected creation networks. statistical results showed that proposed is capable calculating dataset low average absolute percent error (AAPE) 3.35% high determination coefficient (R2) 0.995.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow Pattern Identification and Pressure Drop Calculation for Gas-Liquid Flow in a Horizontal Pipeline

Two phase gas-liquid flow pattern in a horizontal pipeline is predicted very accurately using a newly-developed analytical relation. The pattern identification is based on one of the most widely used graphs, the Baker diagram, modified in a way that compensates for the unrealistic oversimplifications of recent works. The Kern's method of pressure drop calculation is used to obtain the frict...

متن کامل

An Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow

In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...

متن کامل

An Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow

In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...

متن کامل

synthesis of platinum nanostructures in two phase system

چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...

Numerical Study of Single Phase/Two-Phase Models for Nanofluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow

In this paper, the problem of turbulent forced convection flow of water- alumina nanofluid in a uniformly heated pipe has been thoroughly investigated. In numerical study, single and two-phase models have been used. In single-phase modeling of nanofluid, thermal and flow properties of nanofluid have been considered to be dependent on temperature and volume fraction. Effects of volume fraction a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16041686